2,884 research outputs found

    PSYCHOSOCIAL ASPECTS IN CAREGIVERS CARING FOR CYSTIC FIBROSIS PATIENTS

    Get PDF

    Vertically resolved aerosol properties by multi-wavelength lidar measurements

    Get PDF
    An approach based on the graphical method of Gobbi and co-authors (2007) is introduced to estimate the dependence on altitude of the aerosol fine mode radius (<i>R</i><sub>f</sub>) and of the fine mode contribution (η) to the aerosol optical thickness (AOT) from three-wavelength lidar measurements. The graphical method of Gobbi and co-authors (2007) was applied to AERONET (AErosol RObotic NETwork) spectral extinction observations and relies on the combined analysis of the Ångstrom exponent (<i>å</i>) and its spectral curvature Δ<i>å</i>. Lidar measurements at 355, 532 and 1064 nm were used in this study to retrieve the vertical profiles of <i>å</i> and Δ<i>å</i> and to estimate the dependence on altitude of <i>R</i><sub>f</sub> and η(532 nm) from the <i>å</i>–Δ<i>å</i> combined analysis. Lidar measurements were performed at the Department of Mathematics and Physics of the Universita' del Salento, in south-eastern Italy. Aerosol from continental Europe, the Atlantic, northern Africa, and the Mediterranean Sea are often advected over south-eastern Italy and as a consequence, mixed advection patterns leading to aerosol properties varying with altitude are dominant. The proposed approach was applied to ten measurement days to demonstrate its feasibility in different aerosol load conditions. The selected days were characterized by AOTs spanning the 0.26–0.67, 0.15–0.39, and 0.04–0.27 range at 355, 532, and 1064 nm, respectively. Mean lidar ratios varied within the 31–83, 32–84, and 11–47 sr range at 355, 532, and 1064 nm, respectively, for the high variability of the aerosol optical and microphysical properties. <i>å</i> values calculated from lidar extinction profiles at 355 and 1064 nm ranged between 0.1 and 2.5 with a mean value &pm; 1 standard deviation equal to 1.3 ± 0.7. Δ<i>å</i> varied within the −0.1–1 range with mean value equal to 0.25 ± 0.43. <i>R</i><sub>f</sub> and η(532 nm) values spanning the 0.05–0.3 μm and the 0.3–0.99 range, respectively, were associated with the <i>å</i>–&Delta;<i>å</i> data points. <i>R</i><sub>f</sub> and η values showed no dependence on the altitude. 60% of the data points were in the &Delta;<i>å</i>–<i>å</i> space delimited by the &eta; and <i>R</i><sub>f</sub> curves varying within 0.80–0.99 and 0.05–0.15 μm, respectively, for the dominance of fine-mode particles in driving the AOT over south-eastern Italy. Vertical profiles of the linear particle depolarization ratio retrieved from lidar measurements, aerosol products from AERONET sun photometer measurements collocated in space and time, analytical back trajectories, satellite true colour images, and dust concentrations from the BSC–DREAM (Barcelona Super Computing Center-Dust REgional Atmospheric Model) model were used to demonstrate the robustness of the proposed method

    Vegetation outlines of two active rock glaciers with contrasting lithology

    Get PDF
    Rock glaciers are periglacial landforms consisting of coarse debris with interstitial ice or ice core, characterized by creeping due to ice deformation. These landforms are drawing the attention of plant ecologist as harsh habitats and potential refugia in the global change context. Our aim was to describe the vegetation outlines of two active rock glaciers of the Ortles-Cevedale Massif (Central Italian Alps) on different substrates (silicate and carbonate) and compare them with the neighboring stable slopes and scree slopes. Two hypotheses were tested: 1) rock glaciers differ from the surrounding landforms for the presence of cold-adapted plant communities; 2) rock glacier plant communities indicate similar microclimatic conditions in spite of the contrasting lithology. Data were collected by phytosociological method performing 80 relev\ue9s of 25 m\ub2. Plant communities were compared by a cluster analysis based on the presence/absence species matrix and species relative frequencies for each landform were calculated. The cluster analysis separated first for all the two sites; afterwards, the landforms were differently discerned each other depending on the site. Despite the remarkable floristic differences due to the substrate, the vegetation of both rock glaciers suggest a general adjustment to cold-moist microclimate and long-lasting snow cover, differentiating more or less evidently from the adjacent scree slopes and enhancing the survival of nival entities at the elevation of alpine grasslands

    Multi-Disciplinary Optimisation of Road Vehicle Chassis Subsystems

    Get PDF
    Two vehicle chassis design tasks were solved by decomposition-based multi-disciplinary optimisation (MDO) methods, namely collaborative optimisation (CO) and analytical target cascading (ATC). A passive suspension system was optimised by applying both CO and ATC. Multiple parameters of the spring and damper were selected as design variables. The discomfort, road holding, and total mass of the spring–damper combination were the objective functions. An electric vehicle (EV) powertrain design problem was considered as the second test case. Energy consumption and gradeability were optimised by including the design of the electric motor and the battery pack layout. The standard single-level all-in-one (AiO) multi-objective optimisation method was compared with ATC and CO methods. AiO methods showed some limitations in terms of efficiency and accuracy. ATC proved to be the best choice for the design problems presented in this paper, since it provided solutions with good accuracy in a very efficient way. The proposed investigation on MDO methods can be useful for designers, to choose the proper optimisation approach, while solving complex vehicle design problems

    Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios

    Get PDF
    This paper aims to provide a quantitative assessment of the effect of driver action and road traffic conditions in the real implementation of eco-driving strategies. The study specifically refers to an ultra-efficient battery-powered electric vehicle designed for energy-efficiency competitions. The method is based on the definition of digital twins of vehicle and driving scenario. The models are used in a driving simulator to accurately evaluate the power demand. The vehicle digital twin is built in a co-simulation environment between VI-CarRealTime and Simulink. A digital twin of the Brooklands Circuit (UK) is created leveraging the software RoadRunner. After validation with actual telemetry acquisitions, the model is employed offline to find the optimal driving strategy, namely, the optimal input throttle profile, which minimizes the energy consumption over an entire lap. The obtained reference driving strategy is used during real-time driving sessions at the dynamic driving simulator installed at Politecnico di Milano (DriSMi) to include the effects of human driver and road traffic conditions. Results assess that, in a realistic driving scenario, the energy demand could increase more than 20% with respect to the theoretical value. Such a reduction in performance can be mitigated by adopting eco-driving assistance systems

    Losses and Dry Matter Recovery of Pioneiro Grass (\u3cem\u3ePennisetum purpureum\u3c/em\u3e Schumach) and Maize Silages in Mixtures

    Get PDF
    Forages ensiled with high moisture content produce increased quantities of effluents losing highly digestible nutrients (McDonald 1981). The ensilage process usually involves gaseous and effluent losses which are strictly related to the moisture content of the plants used for conservation. The addition of materials with high dry matter content and materials which improve the fermentation pattern has been an alternative to reduce these effluent losses. The maize plant and maize grain, by their physical and fermentative characteristics, may represent alternatives to reduce the losses in the process (Anaya-Ortega et al. 2009). This work was carried out with the aim to evaluate the effect of whole plant maize and maize grain addition to silages of Pioneiro grass as way to control dry matter losses

    Lidar and in situ observations of continental and Saharan aerosol: closure analysis of particles optical and physical properties

    Get PDF
    Single wavelength polarization lidar observations collected at Mt. Cimone (44.2º N, 10.7º E, 1870 m a.s.l.) during the June 2000 MINATROC campaign are analyzed to derive tropospheric profiles of aerosol extinction, depolarization, surface area and volume. Lidar retrievals for the 2170-2245 m level are compared to the same variables as computed from in situ measurements of particles size distributions, performed at the mountain top Station (2165 m a.s.l.) by a differential mobility analyzer (DMA) and an optical particle counter (OPC). A sensitivity analysis of this closure experiment shows that mean relative differences between the backscatter coefficients obtained by the two techniques undergo a sharp decrease when hygroscopic growth to ambient humidity is considered for the DMA dataset, otherwise representative of dry aerosols. Minimization of differences between lidar and size distribution-derived backscatter coefficients allowed to find values of the &quot;best&quot; refractive index, specific to each measurement. These results show the refractive index to increase for air masses proceeding from Africa and Western Europe. Lidar depolarization was observed to minimize mainly in airmasses proceeding from Western Europe, thus indicating a spherical, i.e. liquid nature for such aerosols. Conversely, African, Mediterranean and East Europe aerosol showed a larger depolarizing fraction, mainly due to coexisting refractory and soluble fractions. The analysis shows average relative differences between lidar and in-situ observations of 5% for backscatter, 36% for extinction 41% for surface area and 37% for volume. These values are well within the expected combined uncertainties of the lidar and in situ retrievals. Average differences further decrease during the Saharan dust transport event, when a lidar signal inversion model considering non-spherical scatterers is employed. The quality of the closure obtained between particle counter and lidar-derived aerosol surface area and volume observations constitutes a validation of the technique adopted to retrieve such aerosol properties on the basis of single-wavelength lidar observations
    • …
    corecore